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Annual Report

Project Title: Investigation of model parameters on delay estimates via

wequential state estimation.

Contract No.: N00014-82-K-0048

Principal Investigator: Professor R. Lynn Kirlin

Department of Electrical Engineering

K.University of Wyoming

Laramie, Wyoming 82071

307-766-6137

Long Range Scientific Objectives:

The accuracy of the location parameters is a function of delay measure-

ment variance, apriori variance, and number of sensors. Depending on the

other parameters, the number of sensors can be traded against accuracy and

cost.

Summary of Work, 1 Nov. 1982 - 30 Sept. 1983:

The second year of this contract has considered the effects of spatially

correlated noise on delay estimation in linear arrays. The nonlinear

equations for the multiple (M-l) Maximum Likelihood (ML) estimators have

been derived. Either delays with respect to the Ist (end) sensor or any

independent M-1 delays in the array are usable as unknowns. Cramer-Rao

Matrix Bound elements have been formulated, computed, and plotted for a

number of realistic values of noise correlation and other parameters.

The variation of the variance bound with correlation is not as

significant as the variation with array look angle; up to 5 dB differences

were noted.

Most significantly it has been shown that adding more sensors is not

always fruitful when spatial noise correlation is present. In the ranges

of our parameters little is to be gained in a change from 9 to 15 sensors

compared to the change from 3 to 9. More data production would be useful

on this subject.

A considerably briefer version of the enclosed report will be submitted

to ASSP for publication. Last year's work has been revised per reviewer's

suggestions and is re-submitted.

Opportunity was taken following ICASSP-'83 (where a paper was given

on the early work of this years research) to visit NUSC in New London in

4
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in April. There discussions with a number of peorle solidified some of

the details and focus of this years work. In particular, the work and

data involving spatially correlation noise in towed arrays was brought

to attention. This allowed practical values of parameters and clustered

configurations to be considered.
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ABSTRACT

OPTIMAL DELAY ESTIMATION IN A MULTIPLE

SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE

by

R. L. Kirlin and Lois A. Dewey

Electrical Engineering Department
>

University of Wyoming

-Jz
The maximal likelihood (ML) estimation of time-of-arrival differences

for signals from a single source or target arriving at M > 2 sensors has

been the subject of a large number of papers in recent years. These time

differences or delays enable target location. Nearly all previous work has

assumed noises which are independent among all sensors. Herein noises are

taken to have complex correlation between sensors. A set of nonlinear

equations in the unknown delays is derived and possible simplifications

discussed. The unknowns are in one case the M-1 delays referred to the first

sensor and in another case an M-1 dimensional subset of independent delays from

the M(M-l)/2 pairwise delays. The Fisher information matrix (FIM) for the

estimates is also derived. The Cramer Rao Matrix Bound (CRMB), which is the

inverse of FIM, will show optimal estimator covariances; these are different

than the covariances of correlator delay estimators derived by Hahn [4].

Computer evaluations are given for CIIB elements with varied SNR and noise

covariance values typical of turbulent boundary layer noise in towed arrays.

September 30, 1983
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OPTIMAL DELAY ESTIMATION IN A MULTIPLE
+

SENSOR ARRAY HAVING SPATIALLY CORRELATED 
NOISE

I. Introduction

The estimation of time-of-arrival differences for signals from a

single source or target arriving at multiple sensors has been the subject

of a considerable number of papers in recent years. These time delay

differences, or simply delays, enable target localization through straight-

forward geometrical considerations when the signal path is non-dispersive

[1,2]. Although target location is the primary goal, delay estimation is

essentially equivalent as there is a one-one*, although nonlinear, relation

between the maximum-likelihood (ML) delay vector and ML location vector.

Essentially all of the results of available literature (except [9] have

been based not only upon the geometric and non-dispersive assumptions stated

above but also upon noise spectra which are independent among sensors. The

independent noise assumption is adequate if either the sensor self-noise is

dominant or the sensors are spatially separated sufficiently such that the

environmental noise is indeed independent or uncorrelated among sensors.

However, this is not always a reasonable assumption and the effects of

spatially correlated noise in the estimation of delays and delay variances

must be considered. Thus appropriate analyses are herein undertaken to

consider correlated noise from diffuse sources. Results are compared to

those previously published for independent sensor noises.

Owsley and Fay [11] have considered correlated noise when clustering

sensors and optimizing beamformers. The comparable optimization of delay

estimation has not previously been approached. By choosing the correlation

parameter P, we may include the proportionality of correlated turbulent

boundary layer tow-noise and isotropic sensor noise.

The basic approach is to assume that complex Fourier coefficients Xi(k)
th that the i- sensor for the k- frequency are available, having been obtained

from T-second time records, where T is long with respect to the signal

correlation time.

* For an array with three sensors in line there is an ambiguity in the

sign of bearing angle, which we assume may be solved with additional

information.

+ This study funded under office of Naval Research, contract number

N00014-82-K-0048.
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The time data records are

xi(t) = s(t-di) + ni(t), i = 1,2 .... M. (1)

thwhere d are the delays from the reference sensor to the i- sensor

(dI = 0), s(t) is a zero-mean, Gaussian, stationary signal, and n.(t) is the

additive Gaussian noise at the ith sensor.

II. Background

The problem of delay vector estimation for multiple sensors has been

studied with the above approach in original papers by Hahn and Tretter [3],

Hahn [4] and Schultheiss [5]. Closely following their presentations, let

X = 1  2 x.(t) exp{-jkot}dt, k = 1,2,... ,K, (2)Xik T -r/2 i 0'

where wo = 27/T. Define a vector X containing the above MK Fourier0

coefficients as elements. If S(w) and N.(w) are the signal and noise1

th
spectra at the i-h sensor, the probability density for x can be written

K - K T l

p(X) =Mr I det R(k)) exp[-Z X (k)R (k)X*(k)] (3)
k=l k=l

where

X(k) = [X1 (k), X2 (k),---,XM(k)]T

S[X T(1); XT (2),---,XT (K)]
T

V(k) = [1, exp(-jkw od ),---,exp(-Jkw od )] T

N(k) = [N ij(k)], an MxM matrix of noise

cross-power spectra

R(k) = N(k) + S(k) V*(k)V T(k)

and where * superscript denotes complex conjugation.

In order to obtain the ML estimate of delays, determinant and inverse

theorems of use are

IRI = IN + Sv*vTI INIII + N-lSV*VT = INI(I + SVTN-lV * ) (4)
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and
R-1 = N-1 - N-1 V*(vTN-Iv* + /S)-I  T N-  (5)

Defining elements of N as N , the likelihood function of the delay vector

DT = (d2, d3, .... dM) is, using (4),

A = Zn p(X) = -kn( T K) - I n[IN I (1 + sV)TN-Iv)]
B+

[ N-1X* - xTNN- v*vTN-x*] (6)
B+ VT N-1 V* + 1/S

where I means sum over positive frequencies.
B+

Hahn and Tretter [3] have shown that, when N is diagonal, [Nl,N2 ...,NM],

the Fisher information matrix for D (FIM = - <grad<grad kn A>> where <,> is

expected value) is

FIM = Y 2w2  [(trN )N -N - TN -1 (7)
B+ 1 + I S/Ni  P P

where N -1 is N-1 with the first row and column removed. The Cramer-Rao
p

Matrix bound (CRMB) for the delays D is (FIM)-I . The ML estimate covariance

is known to asymptotically approach the CRIB. The ML estimate for small

delays (D is the error when D = 0) and independent noise is

_<¢-iT (8)
D = -<C> B(8

where
<C> - I = FIM, (9)

B =  S 1 T N-1[XXp*TXX pT]N p-, (10)

B+ 1 + IS/N i

and x is X(k) with the first element (X (k)) removed.

Hahn and Tretter also show that the ML D estimate can be implemented

either as a beamformer (ideally in real time only when the N1 are propor-

ii

tional, because of phase-matching filter criteria), or as a cross correlator

-7I.
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system which produces the M(M-l)/2 delay estimates. The correlator system

has cross-spectral filters

2 S/N NIFij2 - 1 S / i j i, j 1 , 2, .... M, (11)

1+I S/Nk i#j.
k

The error covariance matrix for the pair-wise delay estimates of the cor-

relators is shown by Hahn [4] to have elements

var E - B w2 IF I 4[Ni N + S(Ni + Nj)]dw
ij T i(12)

(fB 2 Fj 
2 Sdw)

2

AA

covar(dij, dkz) = 0, 1, j, k, £ all distinct

A A 27r w 2 1 I2 F 2 SN.dw

covar(dijd - B Fij i' S.di# (13)

JB w2 IFij 2Sdw JB W2IFi£ISdw

=-covar (dij , d , j 9

It is emphasized that these are correlator error covariances of the d..13
and not ML estimator error variances, which are derived herein.

The delays having covariance matrix defined by (12) and (13) are not

the M-l delays referred to a single sensor. Hahn and Tretter have shown how

to use weighted linear combinations of the M(M-l)/2 cross correlation delay

estimates, dij, to form an estimate for D = (di) which achieves the CRMB of

(7).

With independent noises maximization of A in (6) over the vector D

concentrates on the second term in the second summation, because other terms

are not dependent on the d This is not generally the case, and an analytical

solution is not available, as was pointed out in the multipath analysis

given by Owsley [6]. However, the generation of a set of nonlinear equations

in the unknowns d4j may be obtained.

In the next section ML estimator equations for the M(M-l)/2 pairwise

delays are derived. Section IV produces the CRMB for these delays. Section

V considers tie M-1 delays d i - 1l and Section VI derives the CRMB for the

M-1 delays di - d I .
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III. Estimation of an Independent Subset of M(M-1)/2 Delays

This section will determine equations for ML estimates of an independent

subset of the M(M-1)/2 delays di - dk - d ik* In contrast most other papers

referenced find ML estimates of either the M-1 delays (di - d1), 2 S i S M, or

other parameters such as range and bearing, functions of which the di may be

written. The reason for our choosing the dik is that a-priori information

about linear relationships among them may subsequently be used as in [10]

to improve the delay estimates di - d1 or any other subset.

Because we will find equations for real variables and real unknowns,

and we wish to be able to show effects of correlated noise on various parts

of the formulations, double sums throughout the paper are usually broken into

several pieces.

Now consider the two summations in (6), the only functions of D,

A' = -1 kn[C1 + S I Npp + S I N Pqe-jw(dp - d q))NI]
B+ p p q#p

X [ ik I NirNtk ejw(dr - d)

B+ i k r I Npp + I I NPqejw(dp - d) k (14)
p p q#p S

Thus we would like to solve for the dik which maximizes

Al l -1 £n (1/S + I I NPqe-jwdpq
)

B+ p q

+I I I ~ XX * II Nmr Ntn jwd
B+ m n m n r t 1/S + I I NPq e-jdpq

pq

f [-Zn(g) + XTN -V*VTN-Ix* 1 (16)
B+ g

where, using (15),

g = l/S + VTN-1v* = l/S + JNPP + 2 1 1 (coswd Re{N p q }

p p q>p Pq

+ sin wdpq I m{NPq}) (17)

Differentiating A" with respect to dik (assuming all dik independent) gives

DA A" .T N -(VN V*)

ik B+

gg
A N ~ 4 X*-X N V*V N X* (V NlV*] 18

....... NT 1 T T7 -... . .. - ,

+d . . ad (18)

2,
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Setting this equal to zero and rearranging gives

y {_acVT - Tl1T*) 1 T___ 1. 1 __ ___a,_____N__ j (19)
+XTN_ 4(V*T) T l jl*=

B+ a _d g - 2 2
ik g ik

The square-bracketed terms in (19) are a matrix U(i,k) = (u mn(i,k)) A typical

element u mnhas values which differ according to whether or not (m,n)

(i,k) or (k,i). Using

(VVT )mn=ejwd mt(20a)

jwe jdik , (m,n) = (i,k)

(V*V T -j,,, _jwd ik , (m,n) = (k,i) (20b)

idk m,n 0 (m,n) 0(i,k),(k,i)

and

9, 3V N lV* _w- ik-jwdk ki e+jwd k

D d ik

-2w(- , e{fN }ksin uAik + ImNi CsU "id ~ (20c)

in um (i,k) give

e "ik (jw - g /g) ,(m~n)=(i,k)

U e -j A i)i (-jw -gl/g) ,(m,n)=(k,i) (21)
g 1g

Insertion of (21) into (19) constitutes M(M-1)/2 equations, nonlinear, to be

solved f or the d i* This is pursued further in Appendix A for diffuse noise.

Note that only M-1 delays can be independent. We now turn our attention

to the CR113.



IV. The Cramer-Rao Bound for an Independent Subset of the M(M-l)/2 Delay

Estimates of dik

As is well known, maximum likelihood estimators have variances which

approach the Cramer-Rao bound. The variance bounds for the dik are the

elements in the diagonal of

CRMB = (FIM) = (-<grad(grad £n A'') T>)- (22)

wherein FIM is the Fisher Information Matrix, grad A'' is a row vector
th thwhose M- element is the derivative of A'' with respect to the i- delay

(the M- h dik here), A" is the expression in Eq. (17), and <-> denotes

expectation. The outer gradient operator creates a matrix whose elements

are a- (DA'). We have already found the inner partial -- the result
a d rt Ddik

is Eq. (19) and following. For any M-1 independent delays the following applies.

Taking and negating the second partial with respect to d gives
rt

_d a 9" (avN-Iv* a (VTN-Iv, ) 3 v TN-1v )
r ( ) = - I {-[di T -i a dl ]

rt 1k B+ rt ik ik rt
2
g

T 1 T (*T ;(TN-1 *

1 xTN- a a V*V - xTN-1a(V*VT) -1 a(vN-v,)

+ L [g (-ik)N-iX* - N-IX*
ad N *X ad adg rt ik dk rt

X TN-1V*VT NlX* 3 3T N-1 V
-X VVN *-ad ad

rt ik

S(v TN-IV*) xT N- a(V*V T ) N-lx,]
adik drt

1 TN-1 T- TT- -V*V N Na NV*)+2g I(vTN-Iv*)
ad dIa1k rt

J-y 919 + gN-a 2 (V*V)T g2  a(v*V)T
B- 9 adXN ad at Dd k ad ik

drt g _rt 1kd

_ ag 1  ~ ~ T~
ad VV 1  a +2 glg2V*V T Jg rt g g1 X rt g

9L

B+ g" ( 12 - 1 g 2/g - B"+ (23)

li __ ,,;,,-,-,*:',. -*' , .. .. .,, ...... ,,-: •: " -a'"im .. .. : , ,,.
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where

91 39 = 2L,(-Re{N A sinAd + Im{N ik 1cosc.)d (241k 1k i(24)

r t r t
9 A t 2w(-Re{N }s ind r + IiniN :cos,.d )t (25)

and B -b ijs found using
in

0, (r,t) # (i,k)

g (26)912 'id idrt 1k o~. I{ snj.) rt=ik
2- 22 (-Re{N ik,-os, Ik - ik ik

______ iKk

(V" V) w e~ ik, (Im,n) = (i,k)

r t ik in ( - 2 -jwd k (in =(k) (r,c)=(i,k)

o, (m,n) #(k,i), (27)
(i,k)

Then b mnhas the following values:

(in,n) = (i,k), (k,i)

2 g12  1  2gg9b1k ( 2 gw - iw +9j)+ 2 1j-dk (22a)
g g

b =i b ik

where 'p = 0 if c~~)(~)i=1 if (r,t) =(~:

(in,n) = (r,t), (t,r) ; (r,t)#(i,k)

b = -g1 jW + 2g 1 92
rt (g2(28b)

b =b
tr rt

(m,n) A (i,k), (k,1)-, (r,t), (t,r)

b 2g 192  9 __)edm (28c)

b b *
n n
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Using

<X X e ~rt + Nrt ,r t t29

S +N 1,r t

and writing

+2R{ mm XNq
m

+ 2 eX p' X' q * m

p~m q#m n

+ [Refb ) Re{G(m,n)l
m n>m mn

- Imfb I Im{G(m,n)l 1 (30)
mn

where

G(m,n) = X pNPm y X q *N qn (31)

p q

The elements of the FIM are

(FIN) rik= (g 9 - g 1 g)

- b [({ )(mm
mm

* 2 ((Scoswd + Re(N *) Re{mmN mq,

q~m mq mq

mq m,

+ 2 ((Scoswd + Re{N* )) R{fPmmq}
p~m q>p pq pq

--(-Ssinwjd + IM{N* }) 1m{N Pmq})pq pq

+2 IN pm1I (Scosw d pm + Re{Np M}

+ 2 [Re [Re nbI < Re{G(m,n)l>
m n>m

-Imfb mn < Im{G(m,n)} >]) (32)
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where

<Re{G(m,n))-,= (Re{NpmN'ql} (S cosud + Re{N* ~
p q pq pq

-Ii m q (-S sinuid + ImfN* q))) (33

and

<Im{G(m,n)> = (eNNnq(Ssi d + ImfN*~
p q.r~l~ pq pq

pq pq

Use of these elements in the FIM is restricted for inversion to the

CR.MB to M-1 independent delays. Further examination of (32) for diffuse

noise is given in Appendix C.



We now investigate for the M-l d i changes in these earlier results

caused by consideration of noise which is spatially correlated.

V. Maximum Likelihood Estimation

of the M-1 Delays d i-dI

We again maximize A by maximizing

A' = - Z Zn g + I xTN-1v*vTN-lx*/g (34)
B+ B+

Writing
xT N-

p2 pm )

(Y X X N' , ...Y X' X N (35)

th
and the m,n- element

(V*VT  = v = e j m(dm-dn( m,n mn

gives

X TN- VV TN-IX*/g 1 Y L (X Npm IX *Nq)

= 9 VmnX m N m + X PNp m) (X n*N n + Xq Nq n

n PM P q n

= I I Vn(XmXn*NmmN n, +  m X N' I X*N qn,

+ X N Nn n y X N 
P M

mn p#m P

+ X X X NPmNqn (36)

p#m q#n P q

In this form it may be seen that (34) differs from the spatially uncorrelated

noise case only in the -Y Zn g term and the terms in parentheses in (36)
B+

other than X * NmmNnn. If p = 0, Zn g is not a function of the delays
mn

and all Np , p q, are zero. Then as the literature cited shows [3,4),

maximization of (6) reduces to either a beamformer (choosing M-1 di) or a

system of M(M-l)/2 correlators (choosing di-dk).

Further manipulation of Eq. (36) when noise is diffuse is given in

App. A for a special "worst case" when all correlations are 
real and

equal.
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Maximizing A means solving for d in

a {I~+ XTl -1 (V*V)N 1 X
ad gd ad 1 NX

X TN1 V*V TN X* !R I = 0. (37)
2 a

Using

= 2w I(-Ref NiPlsinw(d -d p)+ Im{Niplcos-,(d -dp) (38)

and

-ejw(d 1-d )

(VvT 0--e wd 2-d) i 0

3d i j

e jw(d i-di) e jw(d i-d 2 L .. ej w(d.-d.1) (39)

in (37) gives\\

3A - - (RefNip~sinw(d1 d )+ ImfN'P}cosw(d-d )id B+ 9 ~ii p 1- p

+IXT N-1 A-1X (40)

where A (a mn i)) and wd -

1 -ge m n /g); m,n ior m =ni
amn (w -j g e jwdid n ;m = i, n i i (41)

(-jW gi g) -jw(d.i-dM) m i
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Now note that

XTN-1 lx* -Na (i) (XXn *N Nnn
mn

+ X Nm Y X* Nq n + X *Nn
n I X Npm

q#n q p#m P

+ X X q * NpmN q n )  (42)
p1m q#m Pq

Ignoring the first summation in (40) (from the Zn g term of A) and setting

(42) equal to zero for i = 2,3,...,M constitutes M-1 nonlinear equations

in the M-1 unknowns d2, d3 9 .... dm (d1 = 0).

Equations (42) may be made real by observing that every (m,n) term has

its conjugate. Thus

+y X X 2 PmNmq

p~ql qi
p~m q~m P q

+ 21 Y (Rea mn(i)}Re{G(m,n)}
m n>m

-Im{a mn(i)}Im{G(m,n)}) (43)

where

G(m,n) = X Np' X q*Nn  (44)
P qP q

Because the a mn(i) are functions of gi and g, and gi and g are functions of

all delay differences d p-d , the solution for di cannot be found in terms

of Xi and X1 alone nor even as a linear combination of the X X * ejw(d p-d 
q)

correlators.
VI. The Cramer-Rao Matrix Bound for the M-1 Delays d i-dI .

It is well known that ML estimators approach the Cramer-Rao bound

(CRMB). The variance bounds for the delay estimates di are the diagonal

elements in

CRMB - (FIM)-l (-< grad (grad A')T>)l, (45)

,, ----.------ . -
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wherein FIM is the Fisher Information Matrix, grad A' is a row vector whose
th th

in- element is the derivative of A' with respect to the in- delay dm 1 ,

A' is the expression in (16), and <-> denotes expectation. The outer gradient

operator creates a matrix whose elements are - -d(3-- ). The inner partial
'4d

has already been given by (37) and (40). Continuing we find with =

that

a 3A _ - o 3gi gigk

Uk i+ ad 

T -1 2 T gk D(V*vT)
+ XTN ad kdk g ad.

S3gi VT 1 g. (v*v T
-- 1 V(V*Vg adk g adk

+ - V*VT]Nlx* (46)

g
If k # i, then

ag 2 ik ik
g -2w (Re{Ni cos w(di-d) + Im{Ni sin w(d -dk)) (47a)

ik ik i k

and 0, (m,n) A (k,i) or (i,k)

(avdkd )m,n w 2 ejw(d k-di), (m,n) (k,i) (47b)

w2e-j(d k-d i), (m,n) (i,k)

These give
-a a A'1 -

0dk ad-i B+g gik - k

-I i xT N-uN-Ix* (48)

B+ &

where u have the following valuesin

m # i,k; n 0 i,k

2ik igk jw(d -dn)
U-mn = + )e n (49a)

g

g '. .~
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(m,n) !_(k,i) or (i,k)

u (2 gi + __ 2g Ag w!k ! jw(d k-d i) (49b)
Uki 9 2 +j(--) k

ik ki

m = k; n j i,k or n k; in i,k

u!k+ 29k ijw) ejw~d k -d n) (49c)
gn 9 2 g

U k U km

in =1; n y~i, k or n = 1; mn j i,k

Un (ik + 2A 9k jw(d -d n) (49d)
in g 2 g

umi urnm

m =n

U , -i 2 (49e)

Now the (FIM) may be written 0 k)

(FIM)i A '9 li - gkg

1< 1 11umO Nm

g B+ in

+2 Re{X N""" I X Nq
m q

pom q~m p' q

+2 (Re{um I Re{G(m,n)l
mn n>in

-Iintu }lm{G(rn,n)})]> (50)
mn

where G(in,n) X p P I X q N" as in (44).
q q
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Writing all X pX q as in (29) gives

<X X*>{Se P-c q) 'pNq.q (51)

<Re{G(m,n)l> I I (R{PNq( cosw(d -d )+ Re{1't
p q p q pq

-l{ mNnj(-S sinwi(d -d )+ Im{N* } ~ (52)

<IfGmn~> 1y m op q pq
,Im{Ge{NnNI> =}(-S sinw(d -d )+ Im{N* 1)

p q p q pq

+ Im{N PmN nqj(S cos 4d -d ) + Re{N* 1)) (53)
p q pq

and

=2 )'e( L cosw(d P-d q) + Re{N 1)
p~m q>p 0 m 'qq

Prpq (-S sinw(d -d )+ imTrW )
p q pq

+ (IN Pm I (S + NJ) (4

giving

(FIM)i (g / g)
B+ i

- 1 1 u L(S+N )N)
9 + m mm 1'

+ 2 1 (Re{NNmmj(S cosuw(d -d ) + Re{N*J
q~m m q mq

_I{m~q (-S sinw(d -d )+ Im{N* )m q mq

+ 2 (RfNm mq ( S cosw(d -d )+ Re{N* }
p~m q>p,#m P' q pq

-If mmj(_S sinw(d -d )+ Im{N* 1))
JN~I2 m q mq

+p I P 1 (S + N 1)

+ 2 [ Re{u mnI < Re{G(m,n)}>
m fl>m

-Im(u mn < Im{G(m,n)I >]) (55)

mn, 
w
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For the diagonals of the FIN, let

k = i, then

ag' ,, -22 I (Re{N1Plcosw(d -d)
Dk ki poiip

-Im{N1 PI sinw(d 1-d)) (56)

and

e jw(d 1-d )

22 -0- e jwd2d i -0-

2 -

-d1) - e jw(d . -d 2 ) e jW (d.-d) (57)

These give

a 2 A?- 1 {g -~ 2/ (58)1

3d. g B+9 i -i/i XN W-XI(8

where w n have the following values.

m ~ m #1, n ,

m = ,n i or n =i,m~i

W in (- g i/g + 2 g 2 /g 2 -2(gi/g)jw) e jw(d *-dn) (59b)

wmn Wim

m nl

w mm 11/g +2 g 12/9 (59c)

Using the above results gives

1 2(FIM)i (g - /g)
B+ g
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1 I [ { W [(S+N )(Nmm) 2

g B+ m 1

+ 2Nmm J ((S cosw(d -d ) + Re{N* })Re{N
m q}

q#m K q mq

-(-6 sinw(d -dq) + Im {N*}) ImfNmq})
Ku q mq

+ 2 I (S cosw(d -d ) + Re{N*q}) Re{N PmNmq}

p~m q>p#m p q pq

-(-S sinw(d -d ) + Im{N* Im{Npm Nmq)
2 p q pq

+ I INp m I (S + N)]
p#m

+ 2 ! [Re{w } < Re{G(m,n)} >
m n>m 

mn

-Im{W } < Im {G(m,n)) >11 (60)
mn

To compare with previous results observe in (55) and (60) that if noise

is spatially uncorrelated, gi = 0, and only Uik = u * = w2 e-+jw(di-dk ) and

Win W 2 e ±jw(d d) are non-zero. Further, in (52) and (53) p m

and q = n are the only non-zero terms. Utilizing the above,

2 kk

(FIM) -2 - (cosw(di-d ) NiN S cosw(d -d k )
ik B+ 1 k i k

+ sinw(d -dk ) NiiN
k k S sinw(d i-d k))

2

=-2 N k Nks,
B+ g

where g -1 + Nil,
i

and similarly
2
Sii nn

(FM) = 21 Y N N S.
B+ n#i

g

It is readily seen that this FIM is identical to Eq. 7 (the same as Eq. 12

in [31).

Unfortunately the FIM defined by (55) and (60) has elements which are

in general functions of the delays themselves, making analysis difficult.

However, in the next section we will assume a signal source at infinity,

allowing some simplification.
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VII. Evaluation of the CRMB

It is unreasonable to evaluate and invert the FIM in sections IV or

VI in general because it is a function of all di. However, if wavefront

curvature is ignored, each delay may be written d. = iA where A is the

delay between adjacent sensors. We may also let A vary between zero and
WA = v for a single frequency. Then d - d = (p-q)A for example. ThisP q

is the beam former case.

Because of the generality of the formulas we may also vary the elements

of N, using the symmetric matrix (as in [11])

S1 P2 - Pm-i

N = N 1 1 .M-2

\ 11

wherein Pr = p0 e e Such a correlation is appropriate for turbulent

boundary layer noises and its magnitude with respect to the unity diagonal

accounts for isotropic noise. In the following simulations we choose 1P''=
0, 0.2, 0.4 and w6 having values 0 through 7T/2.

Figures 1-24 show the CRNB (1,1) element, center element, or last

element as a function of the various parameters. Table I is presented as

a guide to comparisons.

The formulas for the FIM may be applied to arrays with clustered

elements as well, if the spacing between clusters is considered. We have

done this in producing the data in Figures 25 through 30. Zero correlation

between clusters is assumed.

The clustered (or grouped) arrays studied are as shown here.

+- 3 sensors
. . . . .. 9 sensors

. . .. . . . . . . . . .. . 15 sensors

The spacing between array ends and ends-to-center remains fixed. The

effect of adding sensors to the cluster when spatially correlated noise

is present can then be observed.

Comments derived from the Figures are as follows

*~k~lan * .. 4,
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1. Figures 1 through 9 show that variance decreases monotonically

with SNR and that variations in p from 0 through 0.4 1456 have

unpredictable, but not large effects.

2. Figures 1 and 7 for example show that more sensors (from 3 to

15) will reduce the variance of a delay.

3. Figures 1,2 or 3,4 or 5,6 or 7,8,9 show that variance bounds for

delays end-to-center will vary with p differently than those for

end-to-end, but not a lot. Also the end-to-end delays vary

least.

4. Comparing Figs. 1 and 3 for example shows that the effect of P

on a delay estimator will vary with wA (look angle.) This variance

is easier to see in Figures 10-24.

5. Figures 10-24 demonstrate that the bounds are effected by look

angle to a much larger extent when P is increased to 0.4. As much

as 5dB (Figs. 11,17) is observed at SNR = 0.1.

6. Comparing Figures in 10-24 with like SNR and M shows that different

delays are effected quite differently as wA varies; i.e. CRMB(l,l),

(2,2), (7,7) or (14,14) all vary differently with p and wL.

7. Grouping sensors when spatial noise correlation is present has

a detrimental effect at low SNR. This may be seen in Figures

25, 26, which also show that the midpoint and end delay variances

are equal at wA = 0. (They are not equal at other wA per comment

4 above). The difference between curves A and B is that the 9 x 9

noise covariance matrix for curve B has 3 x 3 blocks on the

diagonal while curve A's noise matrix is full. Thus curve A

represents a cluster of nine sensors while curve B assumes each

cluster of 3 has noise independent from the other clusters. For

P = 0.2 and wA= 0 the effect is 0.3 dB at SNR = 0.1.

8. Pursuing the question of how much clustering is effective when

spatial noise is present, Figures 27 through 30 plot the variance

bounds vs sensor number M while holding array length constant.

We conclude that delay variances are reduced much less for M

changing from 9 to 15 than for M changing from 3 to 9.

• . .. .... . . ..... . .
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The last comment is meant to be one of the basic conclusions of this

study: that for significant spatially correlated noise, there is a point

beyond which it does not pay to increase sensor number in a cluster when

the purpose is to reduce delay variance between clusters.
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M=3,WOELT=O, NM=2

-I

10-2

10- 1 Ic a ta a a

SNR

Figure 1. CR 'IB(1,1) vs SNR.M=3. A--o=O, B--0-0.2, C--io=jO. 2;
D--P=O.4, E---P=jO.4, F--o=O.4(1+j).i.A=O
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M=3. NDELTR=O,NM=2

101

10-1

10-210

SNR

Figure 2. CRNIB (2,2) vs SNR.M=3. A--P0O, B--R=0.2, C--PjO.2;

D--P=0.4, E--P=JO.4, F--0=O.4(1+j).wAO0
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M=3, WDELTR=.75q, NM=2

01

I&0

CY 2I p p I i I I I I I

SNR

Figure 3. cRMB(l,1) vs SNR.Mn3. A--P0O, B--QPbO.2, G--p~jO.2;
D--P=O.4, E--p-JO.4, F--P=0.4(1+j).wA=nT/4

Id
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Mz5. W!ELTR=. 75q,NM=2

101

(I&

E1

loll 10,
SNR

Figure 4. CRMB(2,2) vs SNR.M3. A--P-0, B--P=0.2, C--p=JO.2;
D--P-O.4, E--P-JO.4, F--PO.41+j).wtA~ff/4
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M=3.WDELTR=1.571,NM=2

101

I&

10-4 a a t t.

IO0-20

SNR

Figure 5. CRMB(,l) vs SNR.M-3. A--P0O, B--P=0.2, C--p0j0.2;

D--P-0.4, E--p=J0.4, F--p=O.4(1+j).wA1T/2
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M=3,WOELTR=1 .571,NM=2

101

E

Figure 6. CRMB(2,2) vs SNR.M=3. A---0, B--p=0.2, C--P-JO.2;
D--P-O.4, E--p-JO.4, F--p-0.4(1+j).WAz7T/2
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II

Et~OLR=~N4

lfJ2  lo,

101R

Fiue7 RBl-)v N9M15I-p0 -P=.,C -=O2

Figure 7. CRMB(, vs SNRO.4 M1.--p0, B--0.2,C-pj.
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M=15.WE*TR. ,N*=1

101

10-2

SNR

Figure 8. CRMB(7,7) vs SNR.M=15. A--P0O, B--P-O.2, C--P=jO.2;
D--P-0.4, E--P=J.4, F--p-O.4(1+j).wA=O
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* M=15WELTRi=ONM=I4

101

Is 2

SNR

Figure 9. CRMB(14,14) vs SNR. M-15. A--O-O, B--p-0.2, C--o=JO.2;
D--p-O.4, E--P-JQ.4, F--p-O.4(1+j).ws-0
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M-3,SNR=. 1,NMZ2

-4 -I

1 01 ,I I I i I i I , a ci a I a lI I ,I , p hi I I a I

0 .2 .4 .6 8 1.0 1.2 1.q 1.,6 1.8 2.0 2.2 2.1 2.6 2.8 3.0 3 2
ONEGRPDELTR

Figure 10. CRMB(1,1) vs WA. M=3. A--P=0.0, B--p=0.2;

C--p=0.4.SNR=0.1

.....~-. , , . ., A: ;-,', .'- . - ,_ . , -~ ,a i , , a . .. .
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M=3,SNR=. ,NM=2

- -fi - - f l -- -A----------------A

101 l I I I i I I I I I I I I I I I I I a I I I I I I I

0 .2 .A .6 .6 1.0 1.2 1.4 1.6 1.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2
OMEGRWOELTR

Figure 11. CRMEB(2,2) vs wA. M=3. A--p=0.0, B--p=0.2;
C--P-0.4.SNR=0.1



34

M=3.5NR=1. .NM2
-0 l i s l e 1 1 1 I *tv ~ l ir' i' 'I . 1 .I * I I'

A A

o .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.1 2.6 2.8 3.0 3.2
OMEGFOtJELTA

Figure 12. CRMB(l,l) vs WA. M-13. A--p-0.O, B--p-0.2;

C--p-O.4.SNR-1.O
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M=3,SNR=1. NM=2-

I&

0 .2 .1% .6 .8 1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.1 2.6 2.8 3.0 3. 2
OMEGR)IDELTR

Figure 13. CRMB(2,2) vs wA. M=3. A--p=0.0, B--P= 0.2;
C--P-0.4.SNR-1.0
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M=3,SNR=lO. ,NM=2

1- I , J l l 1 1 1 ' 114~ ,

L-C

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.4 2.6 2.8 3.0 3.2
OMEGR*iOELTA

Figure 14. CRMB(1,1) vs wtA. M=3. A--p=0.0, B--p=O.2;
C--P=0. 4. SNR=10. 0
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M=3,SNRlO0. NM=2

10 T

0 .2 .4 .5 .8 1.0 1.2 1.4 1.5 1.8 2.0 2.2 2.1t 2.6 2.8 3.0 3.2
OMEGPOI0ELTR

Figure 15. CRMB(2,2) vs wA. f=3. A--Q=0.O, B--P=0.2;
C--P=0.4.SNR=1O.0
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M=15,SNRZ. lNM=IA

'-

o . . .6 .8 1.0 1.2 1. 1.6 1.8 2.0 2.2 2A 2.6 2.8 3.0 3.2

IMEGRiDELTR

Figure 16. CRMB(1,I) vs wtA. M=l5. A--p=0.O, B--p=0.2;
C--O=O. 4.SNR=O. 1

cli
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M=15.SNR=. 1,NM=14

rz

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2.

OMEGFOI0ELTR

Figure 17. CRNMB(7,7) vs wA. M=15. A--p=G.0, B--P=0.2;
C--p=0.4.SNR=O.1
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M- SSNR=. 3 ,NM-Iq
10 , .

&

101 ' , i I . I , 

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.1 2.6 2.8 3.0 3.2

OMEGFIOELTR

Figure 18. CRIMB(14,14) vs A. M=15. A--P-0.0, 
B--00.2;

C--p0.4.SNR=O.1
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101 IM=5,SNRI. ,NMztq

........ ..... .....

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.1 2.6 2.8 3.0 3.Z
0IMEGR3EDELTR

Figure 19. CRMB(1,1) vs WA. M=15. A--p=0.0, B--p-0.2;
C--P=0.4.SNR=1.O
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M-15,SNR-I.,NM=14
101 ' I . I -I I I I * I I * I * I a I * I * I * I

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
OIMEGOIMELTA

Figure 20. CRM(7,7) vs wA. M=15. A--p=0.0, B--=0.2;
C--p-0.4.SNR=1.0

. .........
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M=15,SNR4. ,NM~1q

Cd 1

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.1 2.6 2.B 3.0 3.2
BOEGRIELTS

Figure 21. CRMB(14,14) vs wA. M-15. A--p-O.O, B--p=O.2;
C--P=0.4.SNR=1.0
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M=15,5NR=1O. ,NM=14

1-o-

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
UIMEGNDELTR

Figure 22. CRM.B(1,1) vs wA. M=15. A--P=0.0, B--P=0.2;
C--p-0.4.SNR-1O.O
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M=15,SNRI0. ,NM=jq

Il

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.1 2.6 2.8 3.0 3.2
OMEGAN0ELTA

Figure 23. CRMB(7,7) vs wA. M-15. A--P-0.0, B--P=0.2;
c--P=0.4.SNR-1O.O
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M=15,SNR=1O. NMl14

Ic

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.'t 2.6 2.8 3.0 3.2

OMEGAI0ELTR

Figure 24. CRM(14,14) vs wA. M-15. A--P-0.O, B--P-0.2;
C--p-O.4SNR-1O.O
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M=9,RH0.2,LM-1,ND=O.
26

211 W LINEAR ARRAY
B= GROUPED ARRAY

22
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~16
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SNR

Figure 25. CRMB(8,8) vs SNR. M-9, p-0.2, wAt=0. A -- equally
spaced sensors with full Wx N-matrix, B--equally
spaced sensors with 3x3 block-diagonal N matrix
(cluster-independent noise).
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M=9,RHO=.2,L=M-1 ,WO=O.
26

2qI  A= LINEAR ARRAY
B= GROUPEO ARRRY"

zz
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SNR

Figure 26. CRMB(4,4) vs SNR. M=9, p-0.2, AfO. A--equally

spaced sensors with full 9x9 N-matrix, B--equally

spaced sensors with 3x3 block-diagonal N matrix

(cluster-independent noise).
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5NR=I., L=M- I,WO=O.

11J1  
' I I ' I i I ' I ' I ' I ' I ' I I ' I '-- "----------._ _ ____ __._. ____ _____

3 1 5 6 7 8 9 10 11 12 13 14 15
SENSORS

Figure 27. CRMB(l,l) vs M. SNRlI.0. A--p=0.0, B--p-0.2,
C--p-0.4. Equally spaced sensors, full N-matrix.
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RHO=.2, L=M-], WD=O.
1O2

I100

11
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3 4 5 6 7 8 9 1o 11 12 13 14 15
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Figure 28. CRMB(l,l) vs M. P=0.2. A--SNR=O.1, B--SNR=l.0,
C--SNR=10.0. Equally spaced sensors, full N matrix.
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GROUFE RRRRY, RH0=.2, LM-1, WO=O.
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Figure 29. CRIIE(M-1,M-l) vs M. p=0.2. A--SNRO0.1, B--SNR=1.O,
C--SNR=10.0. 14 sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
of array. No noise correlation between clusters.
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GROUPEO RRRRY, SNR-I., L=M-1, WDO.
1.3'i
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Figure 30. CRMB(M-1,M-1) vs M. SNR=l.0. A--p=0.O, B--P-0.2,
C--P-0.4. M sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
of array. No noise correlation between clusters.
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VIII. Conclusions

Although a closed-form solution for the ML estimate of the dik has not

been obtained, nonlinear equations which theoretically may be solved are

derived. These show considerable complexity which might be somewhat

reduced under rather confining conditions. No simple hardware analogy is

apparent.

The fact that the ML estimators of the d ik are functions of all the

other delays may be a positive observation, that is, no one delay is estimated

without consideration of the others. However, it has been shown (at least

for uncorrelated noises) by Schultheiss [5] that M-1 delays are sufficient

in practicality except when all sensors have small SNR. In fact the CRMB
-i

may not be found from (FIM) using the formulas given herein unless an

independent set of d ik is used.

The variances computed for the delays d. show considerable - several1

dB - deviation as p varies and as M varies. The effect is greater at some

look angles than others, and also depends on which delay is considered.

For sufficient spatially correlated noise, clustering sensors is not

efficient beyond a certain number. Here we show 6 to 9 sensors is a

reasonable number.

4 S. . • -
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Appendix A. Evaluation of the M(M-l)/2

Delay Equations for Dispersive Noise

Cron and Sherman [71 have found spatial correlation factors as a

function of sensor separation distance and wavelength for diffuse surface

noise and for diffuse volume noise. If distances between all sensors

considered are small with respect to half-wavelength, the correlations are

all essentially a constant. Although long arrays span much more than half

a wavelength, a constant correlation is useful when some of the sensors are

clustered. At half wavelength the correlation is zero for volume noise,

but the zero location varies with other geometrical parameters for surface

noise. Both Cron and Sherman [71 and Piersol [8] have suggested exploiting

the correlation zero distances to improve delay estimation; the implication

being that the less correlation the better. Thus it is reasonable to assume

a worst case in which noise at any two sensors has a maximum correlation

P P(k). Due to the symmetry of the diffuse noise source, there is no

time delay associated with the correlation; i.e., all noise cross spectra

are real. Thus let the cross spectral matrix for diffuse noise be

N = NIP( 
l

For this N, use of the theorem

T -l 1 T
(I + rc T rc

gives
N-1 . (N p

q )

where/

Nii ( + (M-2)O0 (A2a)
N1 (1-P) \ + (M-1) )

N (I -P , p q. (A2b)
N•(l-P) (M-lP
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Eq. (19) may be written

I {-g 1 /g +x TN1 UN1 X* =O0. (A3)

1-B*

where the elements u mnare given in Eq. (21), and g 1 is in (20c).

A simplification may be obtained by observing the relative magnitude of

SV TN -1V* =SYI N p w pq
p q

pi (A4)
=-S(MN" + 2 N coswd

p q>p pq

Substituting (A2) into (A) gives

SVT N lV* S[M(1+(M-2)p)
N 1 (i-P)(l+(M-1)p)

-2p Y I co-A pq I (A5)
p q>p p

Since there are M(M-1)/2 terms in the double sum ai-A 1,osOI 1

1 SN V N lV* < S/N 1  !1+2((M-3/4) 2-T)pM (A0)
N 1  1+(M-1)p (1-p) (1+(M-l)p) 1

Thus under the very tolerable conditions that MS/(N 1(1+(M-1)p) 1l or

P-kIS- 1)/(M4-1), we note that in (21)

2Nik 1snw k I -2wp sinwd ik MS (A7)

l+SV T NlV* N I N(1-p)(l+(M-l)p) N 1 +(M-1)P)

-2wpsinwdk/ (M(l-p))

Using (A7) in (21) gives

we jw ik -
2 psiflwdik), (m,n) =(i,k)

1 wejwd ik(-j - 2psinwd ik ), (m,n) = (k,i) (A8)
"mn g m(l-P)

-2pwe jdmn sinwd k (n) ik,(k)
M(l-P) ,(~)#(~) ki
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The following steps will lead to an equation, nonlinear, for dik

in terms of the other delays and having only real quantities. Thus the dik

terms are separated from others in the summations. The set of M(M-l)/2

equations could theoretically be solved for any M-1 independent unknowns

d ik. Further, assumptions about large M, small P, or small dik lead to

simplifications and linearizations, but these are not pursued here.

Using the approximations (A8) in (A3) gives

ik T- 1 -1lT
i (2wNisinwd + XTN UN XT

B+g 
ik

1 1 [2wN iksinwdi
B+g

-2pwsirwidik X X *NprNtq e jurt

M~lP)p q
M(l-f) p q (r,t) # (k,l), (i,k)

- 2psinwd ik)+ I I (J1k)X X *NikeJdk

p q M(I-P) P q

( 2P )XX * NPk Niq e-jd ik] = 0 (A9)+ (-J- -) )  p q

Grouping index pairs (p,q) according to matches with either m or n 
or

both in e +jWmn and using a and a for the N- 1 elements gives (see Appendix B)

1 i {2wNik snWdik
B+ g

-2pwsinwdik I I [(2a(IXr 12+IX t2)

M(l-P) (r,t)#(i,k),(k,i)

+2x2  Y I X pX q*) coswdrt
p#r,t;q#r,t P q

+0 2 X r Xt* + OL2 Xt Xr * + a ,X rXq * + a2  X XtXq*

q q

+ a2 X X + aa XpXt*)ejrt

2 2
+ (a 2 Xr Xt,* + a2 Xt Xr, + a2 X X q * + a X Xt X q

+(trt+ rq, r q q

+ t Xp X r* + a 2  XpXt*)e-JU rt]
p, p,.



- W (2 sinwdi ~ I +IX1) + 2a2 y yx x*)
M(1P) k'p IqI p q ik

H-(2 x12 + IX 2 2 XXW2oa( 1X ki + 2ax P qX s) Siwdik
p q

+W(j- 2P[i2Xd X k +a2Xk X + * .Ot iq + a , k q
MUl-p) q q

+ t2 ~ X X 1 *+ aL X keikd

p p

+Wj 2psinuOik[' 2 X 2 XX*+a .
M~-)ik k, i? q q k q

X.f3 + OteJ"ik} 0 010

where p' and q' indicate omission in their sequences of r and t for the

jW jWde rt terms or 1 and k for the e 1k terms.

Noting that the coefficients of e imd are complex conjugates, we may

write, using

(a + jb) (cosO+JsinO) - a cose - bsine + J(b cose+asine)

(a - b) (cose-jsinO) - a cosO - bsine - j(b cosO+a sine)

Bg t2w a sinwdA

M[(l-p) riI ti

+ a 2 1 1, X p Xq*) coswd rt

+ ((2 +2 )Re{XXX *} + ((I+a 2) Re{X X *+ X*X } coswd
rtr p t p rt

- W(3 2 _ 2 )1 m{XrX t*} + (cta-OL2) 1 I {r X p* + X *X }sinud rt

pq

P q

+ (2Paf~dk (c3~ 1 1
2 + 1X'12 + .2 1 1 X *) cosud 1k

M(1-P) p a q p
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+ ((2a 2)1m{XiXk*} + (1a3-2)[ Im{XiXp* + XpXk*})coswdik

,- (Z 2_U2)L d.IC *2  + (c-3 a2  1 {X X * + X X *}2.sinwd
MUP kpmi p p k ik

+ (0c2 + 132)Re {X X*} +a 2 ReXiXp+XpXk*)sinu4dik

M(I-p) (B - )I{ i-} + (e{XX2  * I+Xip Xp *}si ip'

2Psi R eX 2 2 2+ ( nik )((a + 12)Re{X X *} + (Ct 2a) [ Re{X.X * + X X*})cosud ]}=O

M(l-P) P (All)

where p = 1 if r - t, P = 2 otherwise.

Note that all elements in Eq. (All)are real because for example

I X X q p IX 12 + 2 ,q Re{XpX*}

p q p q pi,k P p'q'>p' pq

First simplifications of (All)may be obtained by observing P>>Jj when

1 + (M-2)p>>jpj, which is often true. The 2wcasinwd term is negligible
2 1k

with respect to any of the 13 or 1c terms, particularly at large SNR. Also

at large SNR, terms such as Re{X X *} are approximately equal to S cosd rp'

and terms such as I m{Xr X p* } are approximately Ssinwd rp. If 2p/(M(l-p))<<l,

many terms drop out.

If the double sum over r,t could be omitted, and if wd ik<<, the

equation could be linearized, but this is not generally feasible. There

are M(M-l)/2 terms in the double sum, each of comparable magnitude to the

dik terms, and the double sum is multiplied by 2pw sinwdik/(M(l-0)). So

roughly to drop out the double sum over r, t, we require M(2-1) 20 sin ik l
2 MUl-P)

or (M-l)p/(l-p)<<l. This is not likely.

S -. ' ,t> 2
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Appendix B. Separation of Terms, Diffuse Noise

In Eq. (A9)the double sum over r,t is broken into parts for (r,t)

(i,k), (k,i) and (r,t) - (i,k), (k,i). Each part then has terms such as

e jdik 1 X X *NPiNkq + e-Jdik I I X X *N pkeiq

pq pq Pq

wherein r and t replace i and k for the other part of (A9). The double sum

over p, q may further be broken down into parts for which p or q or both

are equal to i or k or both, each case giving different values for N p or
kq +

Nkq . These give the following results, using a and a from (A2) and e and

e- for the exponentials. (Similar results are obtained for the difference

of the conjugate exponentials, yielding sinAwdik terms).

p,q i,i

8t xi12 e+ + 8ctXil 2e-= 2aalXii2coswd ik
p,q k,k

28a IXkJ 2 coswlik

p,q - ik

a2 XiXk* e+ (2 XiXk*e-

p,q - k,i
2 *e+ 82

a2 XkXi e + XkXi e

p,q - iq 0 i,k

IXiX q* t e+ + I XiX q*a2 e-
q

p,q - kq # ik
* 2+, * -

XkXq a 2e + XkXq  a e
q q

p,q - p ik;q - i

I XpXi a2 e+ +1 XpXi* 0a e-

p p

_ _ _ _ _ _ _ _ _ _ _ _"
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p,g p #i,k;g k

~xp xk * aOe + +LX I a e-
p p p

p i,k;g ,0 i,k

2 1 1 a 2 XX qcosw i

p~i,k q~i,k pq 1
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Appendix C. Evaluation of FIM for Diffuse Noise,
An Independent Subset of M(M-1)/2 Delays

The following applies to any subset of M-1 independent delays dik

To determine the FIM, we must calculate the expected values of X X
r t

using the noise matrix in (Al). This gives

<X X =+f 1  ,r9
r t Se ~rt + pN1, r #t (l

We also note that (23) becomes for real N

a2All f- w {2 gN ikcosd + 4w 2(N )k sin 2Wd.)/g2
~d2 B+ik ik

adi ++ X N -1A(m,n)N X*} (C2)

The elements of A(m,n) = (a mn) are (using (24)-(28) and real N)

a 2 V*V) T 2w 2N cosuo T 4wN iksinwd a*a +~d ik (V*V) + ik(3V T
m DAik 2"m,n 2 m,n 2 3dik m,n

g g
2 ik 2 2

+8w (N ) sin wdi (vT)mn

3
9

-2e Wdi 2W 2N ikcoswd ike JAik

j4w 2N iksinwdi JAi

2w 2ik2 cs + 2 wdk2 i U (
k 8 e (N)sn ik ik en, ik, (m)n (i)k (C3)

9 2

and a nm a *nAr

nmanin
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Now from (C2) we may expand

<XNl ANlX*> ~ < IX rNr Ia mnNnt*>

m n r mn

< X rXX t*> N rm.Nn, a mn(CO
m nr t rtm

Applying (Ci), (03) and (C4) to (C2) and using the separation-of-

terms process in Appendix B gives for the diagonal elements of the FIN,

2 2
(FIM) vv= - - {2acoswd ik+ 9- sin ik

B+ g i

+ (-1 + 2csAik + 8a2sin 2 wd ik ) [4aa(S+N )coswdk

2 292 2 2
+ 2(a +B) pNl1coswd ik + 2$S + 2 a Scos 2 Wlk

+4(M-2) PN (a 2+a$~)coswdk

a2  2+2 S W ctcosw(d ik-d iq) + acosw(d iq+d )k + a cosw(d ik-d )q

+ cs~cosw(d ik+dkq)

+ 2a 2((M-2)(S+N) + 2((M-2) 2- (M-2))PN1

+ S coswp )coswd ik
p pq >k

- ( ik)[4aa(S+N )sinW~

2 2 2
+ 2(a +$ ) pN1 sinwdi + 2 a S sin2wdi

2
+ 4(M-2) pN (a 4ct8) sinwdi

+2S,(a~cosw(dik-di a ctcosw(diq+dik) + a coswcd kdkq
q

-at~cosw(d ikddq))

+ 2ax (M-2)(S+N) + 2((M-2) -(M-2)) PN 1 + 2 coswd p ) sinW ikl

2w2 coUA 8W2 2si 2LWp'q'>' 
p

+ icodk + 8wasi idk) [4a83(S+N pcosUAdr
9 2 (r,t)O(i,k)

g (k,i)

-i6~
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2 2 2 2
+ 2(a + N COSWd + 282S + 2cc S cos 2Wdr

2+ 4(M-2)PN 1(a +c4)coswdrt

+ 2 S (a cosw(d rt-d rq) + a2 cosw(d rq+d r)

+ a 2cosw(d -d ) + Bceosw(d +drt tq rt-. rq

2 2+ 2a ((M-2)(S+NI) + 2((M-2) - (M-2))pN1

+ 2 7 Scoswd pq)cosWd rt (C5)
p' q'>p'

Some reduction in the number of terms may be obtained by gathering

coefficients of sines and cosines, but this will not be done here. Rather

the various terms are left for better inspection and identification with

their sources. However, let it be observed that the diagonal elements

(FIM) may be written

2 2
(FIM)v {2acoswd = +- e {sin7 2  si

B+ g

+ (-1 + 2aceswdik + 8a 2sin2 Wlik) Al(i,k)
g 2

g
- 4sinwd ik) A2(i,k)

g

(2wc2coswdik + 8w sin k) 7 7 A(r,t)) (C6)

g 2 (r,t)#(i,k),(k,i)
g

where Al, A2, and A3 are as indicated in (C5). These will be used again in

the off-diagonal elements' expression.

The off-diagonals are found similarly.

Utilizing functions A., A2, and A3 as in (C5) and (C4) the

off-diagonals are

2 2
(FMvw " -- 4 sndik sl~rt/g

+ 8sndrt sl~ik Al(i,k)
2
g

+ 2 s sinwdt A2 (i,k)

2



C4

+ 82 sin dr sinb-d ik A (r,t)
2

g

2 a s indik A 2(r,t)

g

Sai sind inwdik A (mn)(C7)
2 (m,n)#(i,k),(k,i) 3

g (r,t),(t,r)

A few remarks are in order at this point. The obvious feature is that

expressions (C6) and (C7) for the FIM elements are very complex; they are

functions not only of the delays whose covariance is sought but also of

all other delays. One simplification is to discard i2 and/or a- factor terms

with respect to 2 terms. Another is to consider the case where all delays

are equal to zero. For a zero delay vector, the covariances in (C7) are

also zero, the inversion of the FIM is considerably simplified, and the

diagonal elements of FIM and their inverses are functions of p,M,S and N1 only.

It is interesting that in this zero-delay situation the covariance

oi two delays is zero. This differs from the ML estimation of the M-1

de'ays referred to a single sensor (see Eq. 7). Those delays have a non-

zero covariance with or without cztrelated noise. Mathematically the

difference is between a 3 V VT and 3 3 V*VT
adrt ( d ik ) 2 ( dI

The second-order partial with double subscripted variables is zero, while

that with single subscripts is not. This is because the elements of V V

are of the form exp(j(di-d k)) = exp(jWdik). For example if dI  d and

d 2 = dk then - ( vVT ) yields an element w exp(jw(d1 -d2) # 0, but

2 (V*VT ) = 0. Further, if p = 0, then the off-diagonal elements of9d rtadik

the FIM of the dik are always zero. Evidently with spatially uncorrelated

noise, ML estimates of the dik are uncorrelated, although either the
generalized cross-correlator measurements of dik which yield ML estimates

of the d [3,4] or the ML estimates of the M-1 delays d, are correlated,

as shown in Eqs. (13) and (7).
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